Illumination stimulates cAMP receptor protein-dependent transcriptional activation from regulatory regions containing class I and class II promoter elements in Synechocystis sp. PCC 6803.
نویسندگان
چکیده
The cAMP receptor protein (Crp) is a global transcriptional regulator that binds sequence-specific promoter elements when associated with cAMP. In the motile cyanobacterium Synechocystis sp. strain PCC 6803, intracellular cAMP increases when dark-adapted cells are illuminated. Previous work has established that Crp binds proposed Crp target sites upstream of slr1351 (murF), sll1874 (chlA(II)), sll1708 (narL), slr0442 and sll1268 in vitro, and that slr0442 is downregulated in a crp mutant during photoautotrophic growth. To identify additional Crp target genes in Synechocystis, 11 different Crp binding sites proposed during a previous computational survey were tested for in vitro sequence-specific binding and crp-dependent transcription. The results indicate that murF, chlA(II) and slr0442 can be added as 'target genes of Sycrp1' in Synechocystis. Promoter mapping of the targets revealed the same close association of RNA polymerase and Crp as that found in Escherichia coli class I and class II Crp-regulated promoters, thereby strongly suggesting similar mechanisms of transcriptional activation.
منابع مشابه
FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions.
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decrea...
متن کاملAn Rrf2-type transcriptional regulator is required for expression of psaAB genes in the cyanobacterium Synechocystis sp. PCC 6803.
Photosynthetic organisms must regulate photosystem stoichiometry (photosystem I-to-photosystem II ratio) under various light conditions. Transcriptional regulation of the psaAB genes is a critical process for this photoacclimation in cyanobacteria. In the course of our screening of transcriptional regulators in the cyanobacterium Synechocystis sp. PCC 6803, we found that chlorophyll accumulatio...
متن کاملRedox control of ntcA gene expression in Synechocystis sp. PCC 6803. Nitrogen availability and electron transport regulate the levels of the NtcA protein.
In this work we have studied the influence of the cellular redox status in the expression of the Synechocystis sp. PCC 6803 ntcA gene. Two different ntcA transcripts with different 5' ends were detected, depending on the different dark/light or nitrogen availability conditions. Accumulation of a 0.8-kb ntcA message was light and nitrogen dependent, whereas a longer 1.2-kb ntcA transcript was ne...
متن کاملSalt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803.
The cyanobacterium Synechocystis sp. strain PCC 6803 is able to acclimate to levels of salinity ranging from freshwater to twice the seawater concentrations of salt by accumulating the compatible solute glucosylglycerol (GG). Expression of the ggpS gene coding for the key enzyme (glucosylglycerol-phosphate synthase) in GG synthesis was examined in detail. Under control conditions, the GgpS prot...
متن کاملExploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803
BACKGROUND The unicellular cyanobacterium Synechocystis sp. PCC 6803 has been widely used as a photoautotrophic host for synthetic biology studies. However, as a green chassis to capture CO2 for biotechnological applications, the genetic toolbox for Synechocystis 6803 is still a limited factor. RESULTS We systematically characterized endogenous genetic elements of Synechocystis 6803, includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 155 Pt 9 شماره
صفحات -
تاریخ انتشار 2009